
Vsevolod Stakhov
https://rspamd.com

https://rspamd.com

Why rspamd?
A real example

Rspamd in nutshell
• Uses multiple rules to evaluate messages scores

• Is written in C

• Uses event driven processing model

• Supports plugins in LUA

• Has self-contained management web interface

Design goals
• Orientation on the mass mail processing

• Performance is the cornerstone of the whole
project

• State-of-art techniques to filter spam

• Prefer dynamic filters (statistics, hashes, DNS lists
and so on) to static ones (plain regexp)

Part I: Architecture

Event driven processing
Never blocks*

• Pros:

 ✅ Can process rules while waiting for network services

 ✅ Can send all network requests simultaneously

 ✅ Can handle multiple messages within the same process

• Cons:

 📛 Callbacks hell (hard development)

 ⛔ Hard to limit memory usage due to unlimited concurrency

*almost all the time

Sequential processing
Traditional approach

Rule 1 Rule 2 Rule 3

DNS Hashes

Wait Wait

Timeline

Event driven model
Rspamd approach

Rule 1 Rule 2 Rule 3

DNS Hashes

Wait

Timeline

Rule 1Rule 1Rules

DNS Hashes

Wait

Event driven model
What happens in the real life

Event driven model
Some measurements

• Rspamd can send hundred thousands of DNS
requests per second (RBL, URI blacklists, custom
DNS lists): time: 5540.8ms real, 2427.4ms virtual, dns req: 120543

• For small messages (which are 99% of typical mail)
network processing is hundreds times more expensive
than direct processing: time: 996.140ms real, 22.000ms virtual,

• Event model scales very well allowing highest
possible concurrency level within a single process (no
locking is needed normally)

Real message processing
We need to go deeper

RulesRulesFilters

RulesRulesPre-filters

RulesRulesPost-filters

📩 Message

📬 Result

Wait

Wait

Wait (dependencies)

Real message processing
We need to go deeper

• Pre filters are used to evaluate message or to
reject/accept it early (e.g. greylisting)

• Normal rules add scores (positive or negative)

• Post filters combine rules and adjust scores if
needed (e.g. composite rules)

• Normal rules can also depend on each other
(additional waiting)

Rspamd processes
Overview

Scanning processesScanning processesScaner processes Controller Service processes

Main process

✉✉✉

HTTP
📬 ✉✉✉

Learn

Messages Results

Main process
One to rule them all…

• Reads configuration

• Manages worker processes

• Listens on sockets

• Opens and reopen log files

• Handles dead workers

• Handles signals

• Reloads configuration

• Handle command line

Main process

⬇

Process ProcessProcessProcess

📃Logs

Listen sockets

📝Config

⬇ ⬇

Signals

Scanner process

• Scans messages and returns result

• Uses HTTP for operations

• Reply format is JSON

• Has SA compatibility protocol

Controller worker
• Provides data for web interface (acts as HTTP server

for AJAX requests and serving static files)

• Is used to learn statistics and fuzzy hashes

• Has 3 levels of access:

• Trusted IP addresses (both read and write)

• Normal password* (read commands)

• Enable password* (all commands)
* Passwords are encouraged to be stored encrypted using slow hash function

Service workers
• Are used by rspamd internally and usually have no external API

• The following types are defined:

• Fuzzy storage — stores fuzzy hashes and is learned from
the controller and accessed from scanners

• Lua worker — LUA application server

• SMTP proxy — SMTP balancing proxy with RBL filtering

• HTTP proxy — balancing HTTP proxy with encryption
support

Internal architecture

libservergmime

libucl

luajit

http-parser

📝Config📬Results✉✉✉

✉✉✉

pcre

aho-corasiclibrdns

Statistics architecture
Bayes operations

• Uses sparsed 5-gramms

• Uses messages’ metadata (User-Agent, some
specific headers)

• Uses inverse chi-square function to combine
probabilities

• Weights of the tokens are based on theirs positions

Statistics benchmarks
Hard cases (images spam)

Spam trigger

5%

95%

Spam symbol Not detected

Ham trigger

8%

92%

Ham symbol Not detected

Statistics architecture
Bayes tokenisation

Quick brown fox jumps over lazy dog
1
2
3
4

1

2

Statistics architecture
Statistics architecture

Classifier

Tokeniser

Statfile (class)

Statfile (class)

Statfile (class)

Backend Classification

Normalised words
(utf8 + stemming)

Spam probability

Tokens

Weights

Fuzzy hashes
Overview

• Are used to match, not to classify a message

• Combine exact hashes (e.g. for images or
attachments) with shingles fuzzy match for text

• Use sqlite3 for storage

• Expire hashes slowly

• Write to all storages, read from random one

Fuzzy hashes
Shingles algorithm

Quick brown fox jumps over lazy dog
w1 w2 w3

w2 w3 w4

w3 w4 w5

w4 w5 w6

w1 w2 w3

w2 w3 w4

w3 w4 w5

w4 w5 w6
N hashes

h1

h2

h3

h4

h1’

h2’

h3’

h4’

Fuzzy hashes
Shingles algorithm

h1 h2 h3

h1’ h2’ h3’

h1’’ h2’’ h3’’

h1’’’’’ h2’’’’ h3’’’’

…

…

…

…

…

min

min

min

min

…

N shinglesN hash pipes

Fuzzy hashes
Shingles algorithm

• Probabilistic algorithm (due to min hash)

• Use sliding window for matching words

• N siphash contexts with derived keys

• Derive subkeys using blake2 function

• Current settings: window size = 3, N = 32

Part II: Performance

Overview
• Rspamd is focused on performance

• No unnecessary rules are executed

• Memory is organised in memory pools

• All performance critical tasks are done by
specialised finite-state-machines

• Approximate match is performed if possible

Rules optimisation
Global optimisations

• Stop processing when rejection score is hit

• Process negative rules first to avoid FP errors

• Execute less expensive rules first:

• Evaluate rules average execution time, score and
frequency

• Apply greedy algorithm to reorder

• Resort periodically

Rules optimisation
Local optimisations

• Each rule is additional optimised using abstract
syntax tree (AST): 3-4 times speed up for large
messages

• Each rule is split and reordered using the similar
greedy algorithm

• Regular expressions are compiled using PCRE JIT
(from 50% to 150% speed up usually)

• Lua is optimised using LuaJIT

AST optimisations
Branches cut

&

|C

! B

A

A = 0, B = 1, C = 0

0

1
10

1

0

Eval order

• 4/6 branches skipped

AST optimisations
N-ary optimisations

>

+ 2

! B

A

Eval order

C D E

What do we compare?

Here is our limit

Stop here

Parsing FSM
• For the most of time consuming operations, rspamd uses special

finite-state machines:

• headers parsing;

• received headers parsing;

• protocol parsing;

• URI parsing;

• HTML parsing

• Prefer approximate matching, meaning extraction of the most
important information and skipping less important details

IP addresses storage
Traditional radix trie

IP1 IP2

01

01

01

01

Level per bit: 32 levels for IPv4
128 levels for IPv6

IP addresses storage
Prefix skipped radix trie

010

IP1 IP2

01

01

IP addresses storage
Prefix skipped radix trie

• Can efficiently compress IP prefixes

• Lookup is much faster due to lower trie depth

• IPv4 and IPv6 addresses can live within a single
trie

• Insertion is also faster

• Algorithm is much harder but extensively tested

Library optimisations
Logger interface

• Universal logger for files/syslog/console

• Filters non-ascii (or non-utf8 if enabled) symbols

• Allows skipping of repeated messages

• Can disable processing in case of throttling

• Can handle both privileged and non-privileged
reopening

Library optimisations
Printf interface

• Libc printf is slow and stupid

• Rspamd printf is inspired by nginx printf:

• Supports fixed integers (int64_t, uint32_t)

• Supports fixed length string (%v)

• Supports encoded strings and numbers (human-readable, hex
encoding, base64 and so on)

• Supports various backends: fixed size buffers, automatically growing
strings, files, console…

• Rspamd printf does not try to print input when output is overflowed (so it’s
impossible to force it to use CPU resources for ridiculously large strings)

Library optimisations
String operations

• Fast base64/base32 operations:

• alignment optimisations;

• use loop unwinding;

• use 64 bit integers instead of characters

• Fast lowercase:

• use the same optimisations for ASCII string

• approximate lowercase for UTF8 (not 100% correct but much faster)

• Fast lines counting: http://git.io/vYldq

http://git.io/vYldq

Library optimisations
Generic tools

• Fast hash functions (xxhash and blake2)

• Fast encryption (using SIMD instructions if
possible)

• Use mmap when possible

• Align memory for faster operations

• Use google performance tools to find bottlenecks

Part III: Security

Main points
• Maintaining secure coding is hard for C:

• Prefer fixed length strings

• Avoid insecure functions

• Abort if malloc fails

• Assertions on bad input

• Testing (functional + unit testing)

• Main treats:

• Interaction with DNS

• Passive snooping of traffic

• Specially crafted messages

DNS security
• DNS is the major point to interact with the external

world

• There could be thousands requests per second

• DNS replies can be untrusted

• SPF records could be recursive

• DKIM records could be malformed

• Need local and global DNS requests limit

RDNS library

• Uses secure DNS ID generator based on crypto
permutation and entropy reseeding

• Uses sockets pool with time/usage expiration

• Randomises source port

• Carefully filters input data (+IDN encoding)

Transport encryption

• Designed to be fast, simple and secure

• TLS is too hard to manage in events based model

• Many functions of TLS are useless for rspamd

• TLS involves intermediate copying and significant
latency increase

HTTPCrypt in nutshell

Handshakes
ClientHelo

ServerHelo
Certificates⚠

ClientChangeCipher

ServerChangeCipher

Data

TLS handshake

ClientPK
Encrypted request

Encrypted reply
Validation (optional)

HTTPCrypt handshake

Performance
Throughput

HTTPCrypt HTTP+TLS (nginx)

Performance
Latency

HTTPCrypt HTTP+TLS (nginx)

Performance analysis
Why HTTPCrypt is fast

• For new sessions, HTTPCrypt uses curve25519 ECDH
which is almost twice faster than NIST P-256 ECDH

• There is no signing operation and no ECDSA

• For bulk encryption, there is no intermediate buffering like
in TLS - the payload is encrypted in-place

• Latency is reduced by skipping the full TLS handshake

• Large requests are somehow slow due to lack of chunked
encoding in HTTPCrypt implementation and some clever
tricks of data reading

Hashes security
• Hash tables are vulnerable for untrusted data:

• Rspamd randomly chooses hash tables seed at start
that is hard to predict

• XXHash is used for good speed and hash distribution

• Siphash is used for public hash tables (e.g. fuzzy
hashes)

• It’s hard to predict hash seed, hence it’s hard to
organise computational attack on hash tables

Part IV: Configuration

Configuration evolution
1. Grammar parser (lex + yacc)

⛔ Hard to manage

⛔ Hard to extend

2. XML

⛔ Unreadable

⛔ Problems with expressions (A > B)

3. UCL - universal configuration language

✅ Easy to manage (looks like nginx.conf)

✅ Macro support

✅ JSON data model (can be used as JSON parser)

UCL building blocks
• Sections

• Arrays

• Variables

• Macros

• Comments

section {
 key = “value”;
 number = 10K;
}

upstreams = [
“localhost:80”,
“example.com:8080”,

]

static_dir = “${WWWDIR}/“;
filepath = “${CURDIR}/data”;

.include “${CONFDIR}/workers.conf”

.include (glob=true,priority=2) “${CONFDIR}/conf.d/*.conf”

.lua { print(“hey!”); }

key = value; // Single line comment
/* Multiline comment
/* can also be nested */
 */

http://example.com

Configuration components

Global options

Workers configuration

Scores (metrics)

Modules configuration

Statistics

• Each component is normally included
to the main configuration

• rspamd.local.conf is used to extend
configuration

• rspamd.override.conf is used to
override values in the configuration

• It is possible to use numeric
multipliers: “k/m/g” or “ms/s/m/h/d” for
time values

Lua rules

• The most of rules are defined in LUA configuration

• Two types of LUA rules:

• Regexp rules (look like strings)

• Lua functions (pure LUA code)

Lua rules
Some examples

-- Outlook versions that should be excluded from summary rule
local fmo_excl_o3416 = 'X-Mailer=/^Microsoft Outlook, Build 10.0.3416$/H'
local fmo_excl_oe3790 = 'X-Mailer=/^Microsoft Outlook Express 6.00.3790.3959$/H'
-- Summary rule for forged outlook
reconf['FORGED_MUA_OUTLOOK'] = string.format('(%s | %s) & !%s & !%s & !%s',

forged_oe, forged_outlook_dollars, fmo_excl_o3416, fmo_excl_oe3790, vista_msgid)

• Regexp rule

• Lua rule
rspamd_config.R_EMPTY_IMAGE = function(task)
 local tp = task:get_text_parts() -- get text parts in a message

 for _,p in ipairs(tp) do -- iterate over text parts array using `ipairs`
 if p:is_html() then -- if the current part is html part
 local hc = p:get_html() -- we get HTML context
 local len = p:get_length() -- and part's length

 if len < 50 then -- if we have a part that has less than 50 bytes of text
 local images = hc:get_images() -- then we check for HTML images

 if images then -- if there are images
 for _,i in ipairs(images) do -- then iterate over images in the part
 if i['height'] + i['width'] >= 400 then -- if we have a large image
 return true -- add symbol
 end
 end
 end
 end
 end
 end
end

Pure LUA functions
Review

• Are very powerful

• Have access to all information from rspamd via lua
API: https://rspamd.com/doc/lua/

• Are very fast since C <-> LUA interaction is cheap

• Can use zero-copy objects called rspamd{text} to
avoid copying when moving data between C and
LUA

https://rspamd.com/doc/lua/

Pure LUA functions
• Variables:

• Conditionals:

• Loops:

• Tables:

• Functions:

• Closures:

local ret = false -- Generic variable
local rules = {} -- Empty table
local rspamd_logger = require “rspamd_logger" -- Load rspamd module

if not ret then -- can use ‘not’, ‘and’, ‘or’ here
…
elseif ret ~= 10 then -- note ~= for ‘not equal’ operator
end

for k,m in pairs(opts) do … end -- Iterate over keyed table a[‘key’] = value
for _,i in ipairs(images) do … end -- Iterate over array table a[1] = value
for i=1,10 do … end -- Count from 1 to 10

local options = { [1] = ‘value’, [‘key’] = 1, -- Numbers starts from 1
 another_key = function(task) … end, -- Functions can be values
 [2] = {} -- Other tables can be values
} -- Can have both numbers and strings as key and anything as values

local function something(task) -- Normal definition
 local cb = function(data) -- Functions can be nested
 …
 end
end

local function gen_closure(option)
 local ret = false -- Local variable
 return function(task)
 task:do_something(ret, option) -- Both ‘ret’ and ‘option’ are accessible here
 end
end
rspamd_config.SYMBOL = gen_closure(‘some_option’)

Pure LUA functions
Generic recommendations

• Use local whenever possible (otherwise, global
variables are expensive)

• Callbacks, closures and recursion are generally cheap
(when using LuaJIT)

• Do not mix string and number keys in tables, that
makes them hard to iterate

• ipairs and pairs are not equal

• Strings are constant in LUA

Regexp rules
Types

• Can work with the following elements:

• Headers: Message-Id=/^something$/H

• Mime parts: /some word/P

• Raw messages: /some pattern/M

• URLs: /example.com/U

• Some new flags are added:

• UTF8 flag: /u

http://example.com/U

Regexp rules
Generic information

• Can be combined using the following operators:

• AND: /something/P && Subject=/some/H

• OR: /something/P || Subject=/some/H

• NOT: !/something/P

• PLUS: /A/P + /B/P + /C/P >= 2

• Priority goes as following: NOT ➡ AND ➡ OR ➡ PLUS

• Braces can change priority: !A AND (B OR C)

Regexp rules
Performance considerations

• Avoid message regexps at any cost (use trie
instead)

• Regexp expressions are highly optimised in rspamd
and unnecessary evaluations are not performed

• UTF regexps are more expensive than default ones
(but could be useful sometimes)

• Always use the appropriate type of expression (e.g.
url for links and part for textual content)

Trie matching
• Perfect for fast raw message and text pattern

matching

• Scales almost linearly from input size (aho-corasic
algorithm)

• Can handle thousands and hundreds thousands
patterns (is a base for all antivirus scanners)

• Highly optimised for 64 bits systems

Questions?

Vsevolod Stakhov
https://rspamd.com

https://rspamd.com

