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Why rspamd? 
A real example



Rspamd in nutshell
• Uses multiple rules to evaluate messages scores 

• Is written in C 

• Uses event driven processing model 

• Supports plugins in LUA 

• Has self-contained management web interface



Design goals
• Orientation on the mass mail processing 

• Performance is the cornerstone of the whole 
project 

• State-of-art techniques to filter spam 

• Prefer dynamic filters (statistics, hashes, DNS lists 
and so on) to static ones (plain regexp)



Part I: Architecture



Event driven processing 
Never blocks*

• Pros: 

 ✅ Can process rules while waiting for network services 

 ✅ Can send all network requests simultaneously 

 ✅ Can handle multiple messages within the same process 

• Cons: 

 📛 Callbacks hell (hard development) 

 ⛔ Hard to limit memory usage due to unlimited concurrency  

*almost all the time



Sequential processing 
Traditional approach
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Event driven model 
Rspamd approach
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DNS Hashes

Wait

Event driven model 
What happens in the real life



Event driven model 
Some measurements

• Rspamd can send hundred thousands of DNS 
requests per second (RBL, URI blacklists, custom 
DNS lists): time: 5540.8ms real, 2427.4ms virtual, dns req: 120543 

• For small messages (which are 99% of typical mail) 
network processing is hundreds times more expensive 
than direct processing: time: 996.140ms real, 22.000ms virtual, 

• Event model scales very well allowing highest 
possible concurrency level within a single process (no 
locking is needed normally)



Real message processing 
We need to go deeper
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Real message processing 
We need to go deeper

• Pre filters are used to evaluate message or to 
reject/accept it early (e.g. greylisting) 

• Normal rules add scores (positive or negative) 

• Post filters combine rules and adjust scores if 
needed (e.g. composite rules) 

• Normal rules can also depend on each other 
(additional waiting)



Rspamd processes 
Overview
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Main process 
One to rule them all…

• Reads configuration 

• Manages worker processes 

• Listens on sockets 

• Opens and reopen log files 

• Handles dead workers 

• Handles signals 

• Reloads configuration 

• Handle command line

Main process

⬇

Process ProcessProcessProcess

📃Logs

Listen sockets

📝Config

⬇ ⬇

Signals



Scanner process 

• Scans messages and returns result 

• Uses HTTP for operations 

• Reply format is JSON 

• Has SA compatibility protocol



Controller worker
• Provides data for web interface (acts as HTTP server 

for AJAX requests and serving static files) 

• Is used to learn statistics and fuzzy hashes 

• Has 3 levels of access: 

• Trusted IP addresses (both read and write) 

• Normal password* (read commands) 

• Enable password* (all commands)
* Passwords are encouraged to be stored encrypted using slow hash function



Service workers
• Are used by rspamd internally and usually have no external API 

• The following types are defined: 

• Fuzzy storage — stores fuzzy hashes and is learned from 
the controller and accessed from scanners 

• Lua worker — LUA application server 

• SMTP proxy — SMTP balancing proxy with RBL filtering 

• HTTP proxy — balancing HTTP proxy with encryption 
support



Internal architecture
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Statistics architecture 
Bayes operations

• Uses sparsed 5-gramms 

• Uses messages’ metadata (User-Agent, some 
specific headers) 

• Uses inverse chi-square function to combine 
probabilities 

• Weights of the tokens are based on theirs positions



Statistics benchmarks 
Hard cases (images spam)
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Statistics architecture 
Bayes tokenisation

Quick brown fox jumps over lazy dog          
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Statistics architecture 
Statistics architecture
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Fuzzy hashes 
Overview

• Are used to match, not to classify a message 

• Combine exact hashes (e.g. for images or 
attachments) with shingles fuzzy match for text 

• Use sqlite3 for storage 

• Expire hashes slowly 

• Write to all storages, read from random one



Fuzzy hashes 
Shingles algorithm
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Fuzzy hashes 
Shingles algorithm
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Fuzzy hashes 
Shingles algorithm

• Probabilistic algorithm (due to min hash) 

• Use sliding window for matching words 

• N siphash contexts with derived keys 

• Derive subkeys using blake2 function 

• Current settings: window size = 3, N = 32



Part II: Performance



Overview
• Rspamd is focused on performance 

• No unnecessary rules are executed 

• Memory is organised in memory pools 

• All performance critical tasks are done by 
specialised finite-state-machines 

• Approximate match is performed if possible 



Rules optimisation 
Global optimisations

• Stop processing when rejection score is hit 

• Process negative rules first to avoid FP errors 

• Execute less expensive rules first: 

• Evaluate rules average execution time, score and 
frequency 

• Apply greedy algorithm to reorder 

• Resort periodically



Rules optimisation 
Local optimisations

• Each rule is additional optimised using abstract 
syntax tree (AST): 3-4 times speed up for large 
messages 

• Each rule is split and reordered using the similar 
greedy algorithm 

• Regular expressions are compiled using PCRE JIT 
(from 50% to 150% speed up usually) 

• Lua is optimised using LuaJIT



AST optimisations 
Branches cut
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AST optimisations 
N-ary optimisations
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Parsing FSM
• For the most of time consuming operations, rspamd uses special 

finite-state machines: 

• headers parsing; 

• received headers parsing; 

• protocol parsing; 

• URI parsing; 

• HTML parsing 

• Prefer approximate matching, meaning extraction of the most 
important information and skipping less important details



IP addresses storage 
Traditional radix trie
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Level per bit: 32 levels for IPv4 
128 levels for IPv6



IP addresses storage 
Prefix skipped radix trie
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IP addresses storage 
Prefix skipped radix trie

• Can efficiently compress IP prefixes 

• Lookup is much faster due to lower trie depth 

• IPv4 and IPv6 addresses can live within a single 
trie 

• Insertion is also faster 

• Algorithm is much harder but extensively tested



Library optimisations 
Logger interface

• Universal logger for files/syslog/console 

• Filters non-ascii (or non-utf8 if enabled) symbols 

• Allows skipping of repeated messages 

• Can disable processing in case of throttling 

• Can handle both privileged and non-privileged 
reopening



Library optimisations 
Printf interface

• Libc printf is slow and stupid 

• Rspamd printf is inspired by nginx printf: 

• Supports fixed integers (int64_t, uint32_t) 

• Supports fixed length string (%v) 

• Supports encoded strings and numbers (human-readable, hex 
encoding, base64 and so on) 

• Supports various backends: fixed size buffers, automatically growing 
strings, files, console… 

• Rspamd printf does not try to print input when output is overflowed (so it’s 
impossible to force it to use CPU resources for ridiculously large strings)



Library optimisations 
String operations

• Fast base64/base32 operations: 

• alignment optimisations; 

• use loop unwinding; 

• use 64 bit integers instead of characters 

• Fast lowercase: 

• use the same optimisations for ASCII string 

• approximate lowercase for UTF8 (not 100% correct but much faster) 

• Fast lines counting: http://git.io/vYldq 

http://git.io/vYldq


Library optimisations 
Generic tools

• Fast hash functions (xxhash and blake2) 

• Fast encryption (using SIMD instructions if 
possible) 

• Use mmap when possible 

• Align memory for faster operations 

• Use google performance tools to find bottlenecks



Part III: Security



Main points
• Maintaining secure coding is hard for C: 

• Prefer fixed length strings 

• Avoid insecure functions 

• Abort if malloc fails 

• Assertions on bad input 

• Testing (functional + unit testing) 

• Main treats: 

• Interaction with DNS 

• Passive snooping of traffic 

• Specially crafted messages



DNS security
• DNS is the major point to interact with the external 

world 

• There could be thousands requests per second 

• DNS replies can be untrusted 

• SPF records could be recursive 

• DKIM records could be malformed 

• Need local and global DNS requests limit



RDNS library

• Uses secure DNS ID generator based on crypto 
permutation and entropy reseeding 

• Uses sockets pool with time/usage expiration 

• Randomises source port 

• Carefully filters input data (+IDN encoding)



Transport encryption

• Designed to be fast, simple and secure 

• TLS is too hard to manage in events based model 

• Many functions of TLS are useless for rspamd 

• TLS involves intermediate copying and significant 
latency increase



HTTPCrypt in nutshell



Handshakes
ClientHelo

ServerHelo 
Certificates⚠

ClientChangeCipher

ServerChangeCipher

Data

TLS handshake

ClientPK 
Encrypted request

Encrypted reply 
Validation (optional)

HTTPCrypt handshake



Performance 
Throughput

HTTPCrypt HTTP+TLS (nginx)



Performance 
Latency

HTTPCrypt HTTP+TLS (nginx)



Performance analysis 
Why HTTPCrypt is fast

• For new sessions, HTTPCrypt uses curve25519 ECDH 
which is almost twice faster than NIST P-256 ECDH 

• There is no signing operation and no ECDSA 

• For bulk encryption, there is no intermediate buffering like 
in TLS - the payload is encrypted in-place 

• Latency is reduced by skipping the full TLS handshake 

• Large requests are somehow slow due to lack of chunked 
encoding in HTTPCrypt implementation and some clever 
tricks of data reading



Hashes security
• Hash tables are vulnerable for untrusted data: 

• Rspamd randomly chooses hash tables seed at start 
that is hard to predict 

• XXHash is used for good speed and hash distribution 

• Siphash is used for public hash tables (e.g. fuzzy 
hashes) 

• It’s hard to predict hash seed, hence it’s hard to 
organise computational attack on hash tables



Part IV: Configuration



Configuration evolution
1. Grammar parser (lex + yacc) 

⛔  Hard to manage 

⛔  Hard to extend 

2. XML 

⛔  Unreadable 

⛔  Problems with expressions (A &gt; B) 

3. UCL - universal configuration language 

✅  Easy to manage (looks like nginx.conf) 

✅  Macro support 

✅  JSON data model (can be used as JSON parser)



UCL building blocks
• Sections 

• Arrays 

• Variables 

• Macros 

• Comments

section { 
  key = “value”; 
  number = 10K; 
}

upstreams = [ 
“localhost:80”, 
“example.com:8080”, 

]

static_dir = “${WWWDIR}/“; 
filepath = “${CURDIR}/data”;

.include “${CONFDIR}/workers.conf” 

.include (glob=true,priority=2) “${CONFDIR}/conf.d/*.conf” 

.lua { print(“hey!”); }

key = value; // Single line comment 
/* Multiline comment 
/* can also be nested */ 
 */

http://example.com


Configuration components

Global options

Workers configuration

Scores (metrics)

Modules configuration

Statistics

• Each component is normally included 
to the main configuration 

• rspamd.local.conf is used to extend 
configuration 

• rspamd.override.conf is used to 
override values in the configuration 

• It is possible to use numeric 
multipliers: “k/m/g” or “ms/s/m/h/d” for 
time values



Lua rules

• The most of rules are defined in LUA configuration 

• Two types of LUA rules: 

• Regexp rules (look like strings) 

• Lua functions (pure LUA code)



Lua rules 
Some examples

-- Outlook versions that should be excluded from summary rule
local fmo_excl_o3416 = 'X-Mailer=/^Microsoft Outlook, Build 10.0.3416$/H'
local fmo_excl_oe3790 = 'X-Mailer=/^Microsoft Outlook Express 6.00.3790.3959$/H'
-- Summary rule for forged outlook
reconf['FORGED_MUA_OUTLOOK'] = string.format('(%s | %s) & !%s & !%s & !%s', 

forged_oe, forged_outlook_dollars, fmo_excl_o3416, fmo_excl_oe3790, vista_msgid)

• Regexp rule

• Lua rule
rspamd_config.R_EMPTY_IMAGE = function(task)
  local tp = task:get_text_parts() -- get text parts in a message
  
  for _,p in ipairs(tp) do -- iterate over text parts array using `ipairs`
    if p:is_html() then -- if the current part is html part
      local hc = p:get_html() -- we get HTML context
      local len = p:get_length() -- and part's length
      
      if len < 50 then -- if we have a part that has less than 50 bytes of text
        local images = hc:get_images() -- then we check for HTML images
        
        if images then -- if there are images
          for _,i in ipairs(images) do -- then iterate over images in the part
            if i['height'] + i['width'] >= 400 then -- if we have a large image
              return true -- add symbol
            end
          end
        end
      end
    end
  end
end



Pure LUA functions 
Review

• Are very powerful 

• Have access to all information from rspamd via lua 
API: https://rspamd.com/doc/lua/ 

• Are very fast since C <-> LUA interaction is cheap 

• Can use zero-copy objects called rspamd{text} to 
avoid copying when moving data between C and 
LUA

https://rspamd.com/doc/lua/


Pure LUA functions
• Variables: 

• Conditionals: 

• Loops: 

• Tables: 

• Functions: 

• Closures:

local ret = false -- Generic variable
local rules = {} -- Empty table
local rspamd_logger = require “rspamd_logger" -- Load rspamd module 

if not ret then -- can use ‘not’, ‘and’, ‘or’ here
…
elseif ret ~= 10 then -- note ~= for ‘not equal’ operator
end

for k,m in pairs(opts) do … end -- Iterate over keyed table a[‘key’] = value
for _,i in ipairs(images) do … end -- Iterate over array table a[1] = value
for i=1,10 do … end -- Count from 1 to 10

local options = { [1] = ‘value’, [‘key’] = 1, -- Numbers starts from 1
  another_key = function(task) … end, -- Functions can be values
  [2] = {} -- Other tables can be values
} -- Can have both numbers and strings as key and anything as values

local function something(task) -- Normal definition
  local cb = function(data) -- Functions can be nested
  …
  end
end

local function gen_closure(option)
  local ret = false -- Local variable
  return function(task)
    task:do_something(ret, option) -- Both ‘ret’ and ‘option’ are accessible here
  end
end
rspamd_config.SYMBOL = gen_closure(‘some_option’)



Pure LUA functions 
Generic recommendations

• Use local whenever possible (otherwise, global 
variables are expensive) 

• Callbacks, closures and recursion are generally cheap 
(when using LuaJIT) 

• Do not mix string and number keys in tables, that 
makes them hard to iterate 

• ipairs and pairs are not equal 

• Strings are constant in LUA



Regexp rules 
Types

• Can work with the following elements: 

• Headers: Message-Id=/^something$/H 

• Mime parts: /some word/P 

• Raw messages: /some pattern/M 

• URLs: /example.com/U 

• Some new flags are added: 

• UTF8 flag: /u

http://example.com/U


Regexp rules 
Generic information

• Can be combined using the following operators: 

• AND: /something/P && Subject=/some/H

• OR: /something/P || Subject=/some/H 

• NOT:  !/something/P

• PLUS: /A/P + /B/P + /C/P >= 2 

• Priority goes as following: NOT ➡ AND ➡ OR ➡ PLUS 

• Braces can change priority: !A AND (B OR C)



Regexp rules 
Performance considerations

• Avoid message regexps at any cost (use trie 
instead) 

• Regexp expressions are highly optimised in rspamd 
and unnecessary evaluations are not performed 

• UTF regexps are more expensive than default ones 
(but could be useful sometimes) 

• Always use the appropriate type of expression (e.g. 
url for links and part for textual content)



Trie matching
• Perfect for fast raw message and text pattern 

matching 

• Scales almost linearly from input size (aho-corasic 
algorithm) 

• Can handle thousands and hundreds thousands 
patterns (is a base for all antivirus scanners) 

• Highly optimised for 64 bits systems
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